
Chapter : 1

Introduction

 INTRODUCTION
Java was conceived by James Gosling, Patrick Noughton, Christ Warth, Ed Frank

and Mike Sheridan at Sun Microsystems Inc. in 1991. The language was initially called

Oak but later renamed as Java in 1995.

The primary need for the development of Java was the necessity of a platform

independent language which could be used to create software for embedded systems.

We know that languages like C and C++ can run on a variety of CPUs, however a

compiler needs to be developed for every CPU on which the program is to be run.

Compilers are expensive and time consuming to create. Therefore, during the

development of Java the main emphasis was on creating a platform independent

language which could run on a variety of CPUs under various environments. This led to

the development of Java.

At around the same time the World Wide Web emerged and Java became a

language of the Internet. The Internet consists of various types of computers operating

under different operating systems and CPUs. It is necessary to run the same program

on all these environments and Java had the capability to run on various platforms and

thus offer portable programs. The Internet ultimately led to the phenomenal success of

Java. Java has an immense effect on the Internet. In a network, two broad categories of

objects are transmitted between the server

and the client. The first category is the passive information and the second one is

dynamic, self executing programs. Such a dynamic program is generated by the server,

however it is active on the client computer. As such, these network programs pose

serious difficulties in terms of security and portability.

We can create two types of programs in Java, applications and applets. An

application is a program which runs on your computer under the operating system of

your computer . An applet is an application which is developed to be transmitted over

the Internet and executed by a Java compatible web browser. An applet is an intelligent

program, which means it can react to the user input.

We know that everytime we try to download programs, we risk the possibility of

infecting our systems with virus. Also other programs may exist which may try to gather

private information such as credit card numbers, bank account numbers, passwords etc.

by searching our computer files. Java provides a security against both these attacks by

providing a firewall between the network application and the user’s personal computer.

This ability to maintain the security of the user’s computer is considered to be one of the

most important aspects of Java.

As we have already seen Java also satisfies the need of generating portable

executable code. Both these aspects of security and portability are addressed by Java

because the output generated by Java compiler is not executable code, but bytecode.

Bytecode is a set of instructions which are designed to be executed by the Java

run time system called the Java Virtual Machine. Thus the JVM is the interpreter for the

bytecode. Only the JVM needs to be implemented for each platform on which the Java

programs are to be run. Although the details of JVM differ from machine to machine all

of them interpret the same bytecode. This helps in creating portable programs which can

run on a variety of CPUs. The execution of a Java program is under the control of the

JVM, therefore it makes the program secure and ensures that no side effects outside the

system are generated. Safety is also enhanced by the features provided in the language

itself. The bytecode also makes the Java run time system execute programs faster.

 JAVA BUZZWORDS
This section describes briefly the list of buzzwords as summed up by the Java team.

From among the buzzwords two viz. security and portability have already been

addressed in the previous section. Here we shall see the remaining ones.

Simple : Java was designed to be easy to learn and effective to use. With prior

programming experience, it is not difficult to master Java. Java provides a small number

of clearly defined ways to accomplish a given task. Java inherits the syntax of C and

C++ and many of the object oriented features of C++. Therefore users who have already

learnt these languages find it easy to master Java with very little effort.

Object Oriented : Java is not designed to be source code compatible with any other

language. The object model in Java is simple and easy to extend. The simple types, like

integers are kept as high performance non objects.

Robust : The ability to create robust programs was given a very high priority during the

design of Java. Java is a strictly typed language and restricts the programmer in a few

key areas. It checks the program code at compile time as well as at run time. Java

manages memory allocation and deallocation on its own unlike in C/C++ where the

programmer has to manually allocate and free all dynamic memory. In Java,

deallocation is completely automatic. Java provides object oriented exception handling.

Multithreaded : Java was designed to meet the real world requirement of creating

interactive networked programs. Therefore to accomplish this, Java supports

multithreading. Multithreaded programming allows you to write programs that can do

many things simultaneously.

Architecture Neutral : Upgradation of operating systems, processor upgrades, and

changes in the core system resources can all be the factors which may cause a program

which was running successfully to malfunction at a later point of time. Java and the JVM

has been designed in such a way so as to attempt to overcome this situation, which

would enable the programs to run inspite of severe environmental changes.

Interpreted : We know now that the output of the Java compiler is the bytecode which

is platform independent. This code can be interpreted by any system which provides a

Java Virtual Machine.

Distributed : Java handles TCP/IP protocols. Accessing a resource using URL is similar

to accessing a file. Java has a package called Remote Method Invocation (RMI) which

brings a very high level of abstraction to client/server programming.

Dynamic : Java programs have the capability to carry a sufficient amount of run time

type information. This information can be used to verify and resolve accesses to the

objects at run time. This makes it possible to dynamically link code in a safe manner.

 OBJECT ORIENTED PRORAMMING
Object oriented programming is at the core of Java. All Java programs are object

oriented. Let us therefore study the Object Oriented Programming Principles before

commencing writing programs in Java.

We have already studied that all computer programs consists of two elements :

code and data. A program can be organised either around its code or around its data.

When a program is organised around the code we call it as a process oriented model

where code acts on data. The process oriented model has been successfully

implemented in procedural languages like C. However, as the programs grow in size

they become more complex. In the second approach which is called object oriented

programming, a program is organised around its data i.e objects and a set of interfaces

to that data. Thus an object oriented program is characterized as data controlling the

access to the code.

An important element of object oriented programming is abstraction. Abstraction

allows you to use a complex system without being overwhelmed by its complexity. A

powerful way of managing abstraction is through the use of hierarchical classification.

The data from a traditional process oriented program is transformed into its component

objects through abstraction. A sequence of process steps then becomes a collection of

messages between these objects. Each object defines its own unique behaviour. These

objects are treated as concrete entities. Your tell them to do something by sending

messages. This forms the basis of object oriented programming.

1.3.1 OOP Principles :

Object oriented programming languages provide a mechanism which helps to

implement the object oriented model. These are given herewith :

Encapsulation : This is the mechanism which binds the code and the data that it

manipulates. It thus keeps both the code and the data safe from outside interference and

misuse. Access to the code and data is possible only through well defined interfaces.

With encapsulation everyone knows how to use the code regardless of the details of the

implementation. The basis of encapsulation in Java is the class. The class defines the

structure and behaviour i.e. data and code that will be shared by a set of objects. Each

object of a given class contains the structure and behaviour defined by the class. The

objects are referred to as an instance of a class. Thus a class is a logical construct and

an object is a physical reality.

The code and the data that constitute a class are collectively called as members of

the class. The data defined by the class are referred to as member variables or

instance variables. The code which operates on the data are referred to as member

methods or methods. The methods define how the member variables are used.

Inheritance : This is the process by which an object acquires the properties of another

object. Inheritance supports the concept of hierarchical classification. With the use of

inheritance, an object would need to define only those qualities that make it unique

within its class. It can inherit the general attributes from its parent class. eg. if you

wanted to describe animals in an abstract manner you would say they have the

attributes like size, intelligence etc. They also have certain behavioural pattern like they

eat, breathe, sleep. Such attributes and behaviour makes up the class definition of

animals. A more specific class of animals could be mammals with some specific

attributes like mammary glands. This class would be a subclass of animals and the

animals class is the superclass. Mammals would inherit all the properties of the animal

class and have its own specific attributes also. You can have more than one level of

inheritance where a deeply inherited subclass will inherit all the attributes from each of

its ancestors in the class hierarchy. If a given class encapsulates some attributes then

any subclass will have the same attributes i.e it will inherit all the attributes of all its

ancestors, as well as add its own specific characteristics.

Polymorphism : This is a feature which allows one interface to be used for a general

class of actions. Polymorphism is expressed as “one interface, multiple methods”. Thus

it is possible to design a generic interface to a group of related activities. Polymorphism

helps in reducing complexity by allowing the same interface to be used to specify a

general class of action. The compiler would select the specific method as it applies to

each situation. The programmer needs to know and use only the general interface.

Thus through the application of object oriented principles, the various parts of a

complex program can be brought together to form a cohesive, robust and maintainable

whole. Every Java program involves encapsulation, inheritance and polymorphism. This

means that the student should bear in mind that every Java program is object oriented

and study how this is applied in the chapters that follow.

Classes and Methods

 INTRODUCTION
A class is a logical construct upon which the entire Java language is built. A class

defines the shape and nature of an object. Any concept that you wish to implement in a

Java program, must be encapsulated within a class. A class defines a new data type.

This data type is then used to create objects of that type. Thus a class is a template for

an object and an object is an instance of a class.

When you define a class, you specify the data it contains and the code that operates

on that data.

The general form of declaring a class is : class classname {

type instance-variable1; type instance-variable2;

...

...

type instance-variablen;

type methodname1(parameter list) { body

}

type methodname2(parameter list) { body

}

.....

....

type methodnamen(parameter list) { body

}

The variables defined within a class are called instance variables. The code is

contained within methods. The variables and the methods within a class are called as

members of the class. It is the methods that determine how the variables of the class i.e.

the class’ data can be used.

Each instance of a class contains its own copy of the instance variables. This implies

that the data for one object is separate and unique from the data of another object.

Remember that Java classes do not need to have a main() method. You only specify a

main() method in a class if that class is the starting point of your program. Also

remember that applets do not have a main() method.

 DECLARING A CLASS

Let us begin our study of classes and methods with the following example. class Volume

{

int length; int breadth; int height;

}

This is a class with the name Volume which defines three instance variables length,

breadth and height. We have now created a new data type called Volume. We now use

this data type to create objects of type Volume. A class declaration only creates a

template, it does not create any objects. To actually create a object of the type Volume

you use a statement as follows :

Volume vol = new Volume(); //create an object vol of type Volume Thus vol will

be an object of Volume and a physical reality. Every object of

the type Volume will contain its own copies of the instance variables length,

breadth and height.

It is possible to create multiple objects of the same class. Remember that changes to

the instance variables of one object will have no effect on the instance variables of

another object.

You can create multiple objects for the above class Volume as: Volume vol2 = new

Volume();

Volume vol3 = new Volume();

The new operator dynamically allocates memory for an object and returns a

reference to it. This reference is the memory address of the object allocated by new.

Thus in Java all objects must be dynamically allocated. The advantage of dynamic

allocation is that the program can create as many objects as required during program

execution. It may also be possible, that due to memory not being available, new may not

be able to allocate memory for an object. In such

situations a run-time exception occurs.

The above method of declaring objects can also be declared in two steps

as follows :

Volume vol1; //declare a reference to object vol1 = new Volume(); // allocate the object

Thus we can see that the new operator dynamically allocates memory to

the object. Its general form can be written as :

clas-var = new Classname();

where class-var is a variable of type classname. Note that the class name

followed by the pair of parenthesis specifies the constructor for the class. A constructor

defines what occurs when a class is created. If no explicit constructor is specified, Java

automatically supplies the default constructor. We shall study how to define our own

constructors subsequently.

It is important to note here that Java’s simple types like integers or

characters are not implemented as objects, and therefore you do not need to use the

new operator with them. Java treats objects differently than the simple types.

To access the instance variables we make use of the dot (.) operator. eg.

to access the length variable of vol you and assign it a value 10, you can use the

following statement:

vol.length = 10;

Having understood the basic concept, let us now write a program to

determine the volume by making use of the above class.

class Volume {

int length; int breadth; int height;

}

class Demo {

public static void main(String args[]) { Volume vol = new Volume(); int v;

vol.length = 10;

vol.breadth = 10;

vol.height = 10;

v = vol.length * vol.breadth * vol.height; System.out.println(“Volume is :” + v);

}

}

Remember that the main() method is in the class Demo. Therefore save the file with

the filename Demo.java. When you compile this file, you will see that two

.class files are created, one for class Volume and one for class Demo. Thus each class is

put into its own .class file. You can also put each class in a separate file. To run the

program, you execute the Demo class. The output would be :

Volume is 1000

Now consider the following example :

Volume vol1 = new Volume(); Volume vol2 = vol1;

In such a situation it is important to remember that both vol1 and vol2 refer to the

same object. This means any changes made to vol1 will affect the object to which vol2

is refering because they are both the same object. Now a subsequent assignment to

vol1 will unhook vol1 from the original object. However, neither the object nor vol2 will

be affected. eg.

Volume vol1 = new Volume(); Volume vol2 = vol1;

....

vol1 = null;

In this case, vol1 has been set to null but vol2 still points to the original object.

This implies that when you assign one object reference variable to another object

reference variable, you do not create a copy of the object, you are only making a copy of

the reference.

 METHODS
The code that operates on the data is contained in the methods of a class.

The general form of a method is :

type name(parameter-list) {

body of the method

}

type specifies the data type returned by the method. This can be any valid data type

including the class type that you create. If a method does not return a value, its return

type must be declared void. name specifies the name of the method. The parameter-list

is a sequence of type and identifier pairs separated by commas. Parameters are

variables which receive values of the arguments passed to the method, when it is called.

If a method has no parameters, the parameter list will be empty.

Remember that methods which have a return type other than void, should return a

value to the calling routine using the return statement as follows :

return value;

where value is the value returned.

We know that we can use methods to access the instance variables defined by the

class. Methods define the interface to most classes and therefore the internal data

structures remain hidden. Let us modify the above program to add a method to compute

the volume.

class Volume {

int length; int breadth; int height;

void calvol() { // method to display volume

System.out.print(“Volume is :”); System.out.println(length * breadth * height);

}

}

class Demo {

public static void main(String args[]) { Volume vol = new Volume(); int v;

vol.length = 10;

vol.breadth = 10;

vol.height = 10;

vol.calvol(); // call method to display volume

}

}

The output of the program would be : Volume is : 1000

/vol.calvol() invokes the method calvol() on the object vol. When the method is

executed the Java run time system transfers control to the code defined inside the

volume. When the code is executed control is transferred back to the calling routine and

execution continues from the following line of code. Remember that in the method

calvol() the instance variables are accessed directly without the dot operator. This is

because a method is always invoked relative to some object of its own class.

In the above example, we have declared the return type of our method to be void

which means our method will not return any value to the calling routine. We can modify

the above method by computing the volume in the method and making the method

return the value to the calling routine. The modified method may be written as :

int calvol() {

return length * breadth * height;

}

In our calling routine we can receive this value in a variable as : v = vol.calvol();

where v is a variable of type int. Alternatively the volume can directly be printed

without an intermediate variable as:

System.out.println(“Volume is :” + vol.calvol());

In this case, vol.calvol() will be called automatically and its value passed to

println().

Remember :

- the type of data returned by a method must be compatible with the return type

specified by the method.

- The variable receiving the value returned by a method must also be

compatible with the return type specified for the method.

Parameterised methods :-

Parameters allow a method to be generalised. A parameterised method can operate

on a variety of data and can be used in a number of slightly different situations. A

parameter is a variable defined by a method which receives a value when the method is

called. An argument is a value that is passed to the method when it is invoked.

We can further modify the above program and add a method which will receive

values from the invoking routine as parameters. These can then be used to compute the

volume. Here is a revised version of the program where we add a method setval().

class Volume

{

int length;

int breadth; int height;

int calvol() // method to compute volume

{

return length * breadth * height;

}

void setval(int l, int b, int h)

{

length = l; breadth = b; height = h;

}

}

class Demo

{

public static void main(String args[])

{

Volume vol = new Volume(); vol.setval(10,5,10);

// call set val to set values

int v=vol.calvol(); // call method to compute volume

System.out.println(“Volume is : “ + v);

}

}

Thus the method setval() is used to set the dimensions length, breadth

and height.

 Consctors

 CONSTRUCTORS

It can be time consuming to initialise all of the variables in a class each time an

instance is created. Therefore Java allows objects to initialise themselves when they are

created. This automatic initialisation is performed through the use of a constructor. A

constructor initialises an object as soon as it is created. It has the same name as the

name of the class in which it resides. Constructors do not have a return type, not even

void. This is because the implicit return type of the class’ constructor is the class type

itself. Let us modify the above program by adding a constructor to it.

class Volume {

int length; int breadth; int height; Volume() {

length = 10;

breadth = 5;

height = 10;

}

int calvol() { // method to calculate volume return length *

breadth * height;

}

}

class Demo {

public static void main(String args[]) { int v;

Volume vol = new Volume();

Volume vol2 = new Volume();

v = vol.calvol(); // call method to compute volume

System.out.println(“Volume is : “ + v); v = vol2.calvol();

System.out.println(“Volume is : “ + v);

}

}

The output of the program would be : Volume is : 500

Volume is : 500

Both the objects vol and vol1 were initialised by the Volume()

constructor when they were created. The constructor gave the same set of values to vol

and vol2 and therefore the volume of both vol and vol2 will be the same.

Thus when you allocate an object with the following general form

:

class-var = new classname();

when a constructor is not explicitly defined for a class, Java

creates a default constructor. However, once you define your own constructor the default

constructor is no longer used.

 Parameterised constructors :

We saw that the above constructor initialised all the objects with the

same values. But actually what is needed in practice is that we should be able to set

different initial values. For this purpose, we make use of parameterised constructors and

each object gets initialised with the set of values specified in the parameters to its

constructor. The following modification in the above program will illustrate :

class Volume {

int length; int breadth; int height;

Volume(int l, int b, int h) { length = l; breadth = b; height = h;

}

int calvol() { // method to compute volume return

length * breadth * height;

}

}

class Demo {

public static void main(String args[]) { int v;

Volume vol = new Volume(10,5,10); Volume vol2 = new Volume(5,5,5);

v = vol.calvol(); // call method to compute

volume

System.out.println(“Volume is : “ + v);

v = vol2.calvol(); System.out.println(“Volume is : “ + v);

}

}

The output of the program would be :

Volume is : 500 Volume is : 125

Remember that the parameters are passed to the Volume() constructor when

new creates the object. Thus you pass values to the object vol when you create it as :

Volume vol = new Volume(10,5,10).

 this keyword

this is a keyword that can be used inside any method to refer to the current object i.e

this is always a reference to the object on which the method was invoked. This is useful

when a method needs to refer to the object that invoked it.

 Instance Variable hiding

In Java, it is illegal to declare two local variables with the same name within the

same or enclosing scopes. However, you can have local variables, including formal

parameters to methods which overlap with the names of the class’ instance variables.

But when a local variable has the same name as the instance variable, then the local

variable hides the instance variable. We can use the this keyword to refer directly to the

object and thus resolve the name space collisions that might occur between the instance

variables and the local variables. eg. we can modify Volume() as follows :

Volume(int length, int breadth, int height) {

this.length = length; this.breadth = breadth; this.height = height;

}

Here the parameter names are also length, breadth and height, so we can

make use of the keyword this to access the instance variables which have the same

names.

 GARBAGE COLLECTION
In languages like C++, dynamically allocated objects must be manually

released by making use of the delete operator. Java however handles deallocation

automatically. The technique which accomplishes this task is called garbage collection.

When no references to an object exist, that object is assumed to be no longer needed

and the memory occupied by that object can be reclaimed. There is no explicit need to

destroy objects. However, remember that garbage collection only occurs sporadically

during your program execution. It will not occur just because one or more objects exist

which are not used anymore.

finalize() method :

Sometimes an object may be required to perform some specific action

when it is destroyed. eg. if it is holding some non-Java resource like a file handle then

such resources should be freed before the object is destroyed. For this purpose, Java

provides a mechanism called finalization. With finalization, you can define specific

actions that will occur when an object is just about to be destroyed. You can define a

finalize() method to specify those actions that must be performed before an object is

destroyed. The Java runtime mechanism calls that method whenever it is about to

recycle an object of that class.

The general form of the method is : protected void finalize() {

finalization code

}

The protected keyword prevents access to finalize() by code defined

outside its class. finalize() is called prior to garbage collection. It is not called when an

object goes out of scope. Thus you have no way of knowing when (or even if) the method

will be executed. Therefore your program must not depend upon finalize() for normal

program operation. It must have other means of releasing system resources used by the

object.

 OVERLOADING
 Overloading Methods

When two or more methods in the same class share the same name, as

long as their parameter declarations are different the methods are said to bo overloaded

and the process is referred to as method overloading. Java supports overloading. It is

one of the ways that Java implements the concept of polymorphism.

When an overloaded method is invoked, Java uses the type and/or

number of arguments as a guide to determine which version of the overloaded method

to call. When Java encounters a call to an overloaded

method, it executes that version of the method whose parameters match the arguments

used in the call.

Overloading allows related methods to be accessed by the use of a common name.

Thus through the application of polymorphism, several names have been reduced to

one. When methods are overloaded each method can perform any desired activity.

There is no rule stating that overloaded methods must relate to one another. However,

in practice you should only overload closely related operations.

The following example demonstrates overloading methods.

 class Area {

 void area(int i) {

 int a = i * i;

System.out.println(“Area of a square is :” + a);

}

void area(float r)

{

}

}

}

void area(int i, int j) { int a1 = i * j;

System.out.println(“Area of a rectangle is :” + a1);

double a2 = 3.14 * r * r;

System.out.println(“Area of a circle is :” + a2);

class Over {

public static void main(String args[]) {

Area A = new Area();

A.area(10);

A.area((float)7.2);

A.area(10,5);

}

}

In the above example area() is overloaded thrice, one which takes one integer

parameter, second takes two integer parameters and the third takes one float

parameter. When you call a method, Java looks for a match between the arguments

used to call the method and the parameter list of the method. Upon finding a match, the

corresponding method is invoked. Study the output of the above program.

 Overloading Constructors

It is also possible to overload constructors. The overloaded constructor is

called based upon the parameters specified when new is executed at the time of creating

objects. Let us write a program to demonstrate constructor overloading :

class Area {

int length, breadth; Area(int i) {

length = breadth = i;

}

Area(int i, int j) {

length = i; breadth = j;

}

int area() {

return length * breadth;

}

}

class OverCons {

public static void main(String args[])

 {

 Area A = new Area(10,5);

Area A1 = new Area(5);

System.out.println(“The area of square is :” + A1.area());

System.out.println(“The area of rectangle is :” + A.area());

}

}

Here when the object A is intialised, the constructor with two parameters

is used and for initialising object A1, the constructor with a single parameter is used.

 USING OBJECTS AS PARAMETERS
Objects can be passed as parameters to methods. One of the most common use of

passing objects as parameters involves constructors. Many times it may be required to

construct a new object that is initially the same as an existing object. To do this, you

simply define a constructor that takes an object as a parameter. The example below

illustrates :

Class Area {

int length, breadth; Area(Area a) {

}

Area(int
i, int j) {

}

int area()
{

}

}

length = a.length; breadth = a.breadth;

length = i; breadth = j;

return length * breadth;

class ObjParam {

public static void main(String args[]) {

Area A = new Area(10,5); Area A1 = new Area(A);

System.out.println(“The area is :” + A1.area()); System.out.println(“The area is :” +

A.area());

}

}

When the first object A is allocated, the constructor which takes two

parameters is invoked. When creating object A1, object A is passed as parameter, and is

used to initialise instance variables of object A1.

 CALL BY VALUE AND CALL BY REFERENCE

The call by value method copies the value of an argument into the formal parameter

of the subroutine. Therefore changes made to the parameters of the subroutine have no

effect on the argument used to call it. In the call by reference method, a reference to an

argument is passed to the parameter. This reference is then used in the subroutine to

access the actual argument specified in the call.

This implies that any changes made to the parameter will affect the argument used to

call the subroutine. Both call by value and call by reference are used in Java.

In Java, when you pass a simple type to a method, then it is passed by

value. Thus changes made to parameters in the method, have no effect on the values of

the argument. However, objects are passed as reference. We know that when we create

a variable of a class type we are only creating a reference to an object. Therefore when

you pass this reference to the method, the parameter that receives it will refer to the

same object as that referred to by the argument. Changes made to objects within

methods, affect the object that has been used as an argument. The following example

will illustrate:

Class One {

int a,b;

One(int i, int j) {

a = i; b = j;

}

void method1(One o) {

 *= 2;

 /= 2;

}

}

class CallRef {

public static void main(String args[]) { One O = new One(10,20);

System.out.println(“Values of O.a and O.b before calling method :” + O.a + O.b);

O.method1(O);

System.out.println(“Values of O.a and O.b after calling method :” + O.a + O.b);

}

}

The output of the program will be :

Values of O.a and O.b before calling method : 10, 20 Values of O.a and O.b before

calling method : 20, 10

Thus you can see that with call by reference changes made to parameters, have

affected the arguments.

 RETURNING OBJECTS
A method can return any type of data including the class types that you created. The

following example will illustrate :

Class One {

int a,b;

One(int i, int j) { a = i;

b = j;

}

One method1() {

One temp = new One(a,b) temp.a *= 2;

temp.b /= 2; return temp;

}

class
RetObj
{

}

public static void main(String args[]) { One O = new One(10,20);

System.out.println(“Values of a and b for object O :” + O.a +

O.b);

One O1 = O.method1();

System.out.println(“Values of a and b for Object O1 :” + O1.a + O1.b);

}

}

The output of the program will be :

Values of O.a and O.b before calling method : 10, 20 Values of O.a and O.b before

calling method : 20, 10

Remember that an object will not go out of scope because the method in which it

was called terminates. It will continue to exist as long as there is a reference to it

somewhere in the program. When there are no references, the object will be reclaimed

next time garbage collection takes place.

 RECURSION
Java supports recursion. A method that calls itself is a recursive method. We

have already studied recursion in our study of the C programming language. Recall that

when writing recursive methods, you must have an if statement somewhere to force the

method to return without the recursive call being executed. Otherwise the method will

never return.

 ACCESS SPECIFIERS
Encapsulation links the data with the code that manipulates the data.

Encapsulation also provides another important attribute viz. access control. By

introducing access control you can control what parts of the program can access the

members of a class and thus prevent misuse. In this section we shall study access

control as it applies to classes. An access specifier determines how a member can be

accessed. The access specifiers in Java are : public, private and protected. protected

applies only when inheritance is involved. Java also defines a default access level.

When a member of a class has the specifier public associated with it,

then such a member can be accessed by any other code in your program. When a class

member is specified as private, then that member can be accessed by the members of

that class alone. Therefore the main() method is always declared as public, since it is

called by code that is outside the program

i.e. the Java run time system. When no access specifier is used, then by default the

member of a class is public within its own package, but cannot be accessed outside the

package. A package is a grouping of classes. We shall study more about packages

later.

An access specifier precedes the rest of a member’s type specification.

eg.

private int i; public double a;

are both examples of declaring variables with their access specifiers. This means that the

access specifier begins the declaration statement of the member.

 STATIC KEYWORD
In some situations, it may be necessary to define a class member which

will be used independant of any object of the class. To create such a member we make

use of the keyword static. When a member is declared static, it can be accessed before

any objects of its class are created and without reference to any object. Both methods

and variables can be declared static. Thus you can understand why the main() method

is declared static. main() is declared static because it must be called before any object

exists.

Instance variables declared as static are essentially global variables.

When objects of its class are declared, no copy of static variable is made. Instead all

instances of the class share the same static variable.

Methods declared static have the following restrictions :

- they can only call other static methods

- they must access only static data, it is illegal to refer to any instance variable

inside of a static method.

- they cannot refer to this or super in any way.

Outside of the class in which they are created static methods and variables can be

used independantly, without use of any object. The general form is :

classname-method();

where classname is the name of the class in which the static method is declared.

 FINAL KEYWORD

When a variable is declared final, its contents cannot be modified. You must initialise

a final variable at the time of its declaration. Usage of final is similar to const in C/C++.

eg.

final PI = 3.141 final MAX = 100;

It is a common coding practice to choose all uppercase identifiers for variables

declared as final.

A note about Arrays : In Java, arrays are implemented as objects. Arrays have a

special attribute which is found in its length instance variable. The size of the array i.e.

the number of elements that the array can hold, is found in the length instance variable.

All arrays have this variable and it will always hold the size of the array. Remember that

the value of length has nothing to do with the number of elements that are actually in

use. It only reflects the number of elements that the array is designed to hold. The

following program demonstrates how to determine the size of the array using the length

instance variable.

class Length {

public static void main(String args[]) {

int a1 = new int[10];

int a2 = {2, 4, 6, 8, 10, 12};

System.out.println(“length of a1 is “ + a1.length);

System.out.println(“length of a2 is “ + a2.length);

}

}

The output of the program will be : length of a1 is 10

length of a 2 is 6

 NESTED AND INNER CLASSES
It is possible to define a class within another class; such classes are

known as nested classes. If class B is defined within class A, then B is known to A, but

not known outside A. A nested class can have access to the members of the class in

which it is nested (including private members). However, the enclosing class does not

have access to the members of the nested class.

There are two types of nested classes : static and non static. Static

classes have the static modifier applied to them, which implies that they must access

members of its enclosing class through an object and not directly. Due to this limitation,

static nested classes are used rarely.

The most important type of nested class is the inner class which is a non

static nested class. It has access to all the members of its outer class and can refer to

them directly. Thus an inner class is fully within the scope of its enclosing class.

Let us study the following illustration of inner class. Class Outer {

int outer_i = 100; void test() {

Inner inner = new Inner(); inner.display();

}

outer : “
+
outer_i)
;

class Inner {

void display() {

System.out.println(“Display member variable of

}

}

}

class InnerOuter {

public static void main(String args[]) { Outer outer = new Outer(); outer.test();

}

}

The output of the above program is :

Display member variable of outer : 100

You can see from the above example, that the inner class named Inner is defined

within the scope of the outer class named Outer. Inner directly access the variable

outer_x. The display() method is defined in the inner class and the outer class creates

and instance of the inner class to access the method display() as inner.display().

Remember that no code outside of class Outer can access the class Inner. Also

remember that an inner class can be defined within any block scope. It is not necessary

that an inner class be enclosed within the scope of a class only.

 INHERITANCE

 Inheritance a Class

We have already studied that using inheritance we can create a general class that

defines traits common to a set of related items. This class can then be inherited by other

more specific classes. Each of these classes adds those features that are unique to it.

A class that is inherited is called the superclass.

The class which inherits another class is called a subclass. Thus a subclass is a

specialised version of a superclass, which inherits all the instance variables and

methods defined by the superclass, at the same time adding its own unique elements.

In order to inherit a class we make use of the keyword extends.

The general form of extending a class is :

class subclass-name extends superclass-name { body of the class

}

The following example will demonstrate how to inherit a class. Class A {

int x, y;

void display() {

System.out.println(“x and y “ + x + y);

}

}

class B extends A { int z;

void showz() {

System.out.println(“z = “ + z);

}

void add() {

System.out.println(“x+y+z= “ + (x + y + z));

}

}

class Inherits {

public static void main(String args[]) { A a = new A();

B b = new B();

a.x = 10;

a.y = 5;

System.out.println(“Contents of Superclass A :”);

 a.display();

 // invoke display on object a

 b.x = 20; //Subclass can access public members of superclass

b.y = 30;

b.z = 10;

System.out.println(“Contents of Subclass “);

 b.display();// invoke the display method on object b

b.showz();

System.out.println(“Call add method from Subclass :”);

b.add(); // add method of subclass

}

}

The output of the program will be :

Contents of Superclass A :

10 5

Contents of Subclass

x and y : 20 30

z = 10

x+y+z= 60

Here you can see that the subclass B includes all the members of its superclass A.

Therefore it can access the variables x and y. Note that class A though a superclass of

B, is completely indepedant stand alone class.

Remember that you can only specify one superclass for any subclass that you

create. Inheritance of multiple superclasses is not possible in Java. (This differs from

C++). However, a subclass can be a superclass for another subclass. Thus you can

create a hierarchy of inheritance in which a subclass becomes a superclass of another

superclass. No class can be a superclass of itself. A superclass can be used to create

any number of subclasses. Also remember that a member which has been declared

private is not accessible by any code outside its class, including the subclasses.

 Super

Whenever a subclass needs to refer to its immediate superclass, it can do so by

using the keyword super. super has two general forms. The first one calls the

constructor of the superclass. The second one is used to access a member of the

superclass that has been hidden by a member of a subclass.

In the first form of super, a subclass can call a constructor method defined by its

superclass by using the following form :

super(parameter-list);

The parameter-list specifies any parameters needed by the constructor in the

superclass. Remember that super() must always be the first statement executed inside

a subclass’ constructor. The following example will illustrate this use of super

class A {

int i; int j;

A(int a, int b)

{

}

...

...

}

i = a; j = b;

class B extends A { int k;

B(int p, int q, int r) {

super(p,q); k = r;

}

...

}

Here the constructor for subclass B is called with parameters p, q, r. We

make use of super() with parameters p and q which initialise i and j. The class A no

longer initialises these values itself. Remember that constructors can be overloaded,

therefore super() can be called using any form defined by the superclass. The one that

matches the arguments in number and type will be executed.

An important thing to note is that super() always refers to the superclass

immediately above the calling class. The general form of super in the second method is:

super.member

member can be either a method or an instance variable. This form of

super is applicable when members of the subclass hide the members of the superclass

which have the same name in both classes. super allows access to the member of the

superclass which has the same name as a member of the subclass.

eg. if a variable i is defined in both the superclass and the subclass, then using

super.i in the subclass, you can refer to the variable i of the superclass.

 Multilevel Hierarchy

You can build hierarchies which contain as many levels of

inheritance as you like. eg. if you have three classes A, B and C, then C can be a

subclass of B, where B is a subclass of A. In this case, C inherits all the properties of A

and B. Remember that all classes can be written in separate files and compiled

separately.

In a class hierarchy, constructors are called in their order of derivation, from

superclass to subclass. Also remember that super() must be the first statement

executed in the subclass constructor.

 Method Overriding

It may so happen that a method in a subclass has the same name and type as that

of the superclass. In this situation, the method in the subclass is said to override the

method in the superclass and the method defined by the superclass will be hidden.

Overridden methods in Java are similar to virtual functions in C++. Let us illustrate

method overriding with the following example :

class A {

int i, j;

A(int a, int b) { i = a;

j = b;

}

void display() {

System.out.println(“i = “ + i + “j = “ + j);

}

class B
extends A {

}

int k;

B(int a, int b, int c) { super(a,b);

k = c;

}

void display() {

System.out.println(“k = “ + k);

}

}

class Override {

public static void main(String args[]) { B b = new B(4, 10, 12);

b.display();

}

}

The output of this program will be :

k = 12

Here, when you invoke the method display()

on an object of type B, the version of display() which has

been defined in B will be used. This means the version of B

will override the version declared in A.

If you wish to access the method of the

superclass, you can do so by using the keyword super.

Modify the above example as shown where you will precede

the display() method of B with the word super.

class B extends A { int k;

B(int a, int b, int c) {

super(a, b); k = c;

}

void display() {

super.display() // call display of A System.out.println(“k = “

+ k);

}

}

The output of the modified program will be : i = 4 j = 10

k = 12

super.display() calls the superclass version of display().

Remember that method overriding occurs

only when the names and the type signatures of the two

methods are identical. If they are not then the methods are

simply overloaded.

class B extends A { void meth() {

System.out.println(“Implement the abstract method of

}

}

class Abstracts {

public static void main(String args[]) { B b = new B();

b.meth ();

b.meth1();

}

}

The output of the program would be :

Implement the abstract method of superclass A Method in abstract class A

Remember that you cannot create an instance of class A. The

method meth() which is abstract in class A is provided a body in the subclass B.

 final

We have already seen one use of final to create a named constant. Let us study

two more uses of final in this section.

Using final to prevent overriding : To disallow a method from being overridden,

specify the final modifier at the start of the declaration of the method. This means that

methods declared as final cannot be overridden. Once a method has been declared

final in a class, its subclass cannot override it. There can be no method with the same

name and type in the subclass. A compile time error will occur in such situation.

Using final to prevent inheritance : If you want to prevent a class from being

inherited you precede the class declaration with the word final. When a class it declared

final, all of its methods are also implicitly declared final. It is illegal to declare a class as

both abstract and final, because an abstract class is incomplete by itself and requires

the subclass to provide implementation to its methods.

	Chapter : 1
	INTRODUCTION
	JAVA BUZZWORDS
	OBJECT ORIENTED PRORAMMING
	1.3.1 OOP Principles :

	INTRODUCTION (1)
	DECLARING A CLASS
	METHODS
	println().
	Remember :

	Parameterised methods :-
	Consctors
	Parameterised constructors :
	this keyword
	Instance Variable hiding

	GARBAGE COLLECTION
	finalize() method :

	OVERLOADING
	Overloading Methods
	Overloading Constructors

	USING OBJECTS AS PARAMETERS
	CALL BY VALUE AND CALL BY REFERENCE
	RETURNING OBJECTS
	RECURSION
	ACCESS SPECIFIERS
	STATIC KEYWORD
	FINAL KEYWORD
	NESTED AND INNER CLASSES
	INHERITANCE
	Super
	Multilevel Hierarchy
	Method Overriding
	final

